Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Sci Rep ; 14(1): 7739, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565869

Mutations in PINK1 and Parkin cause early-onset Parkinson's Disease (PD). PINK1 is a kinase which functions as a mitochondrial damage sensor and initiates mitochondrial quality control by accumulating on the damaged organelle. There, it phosphorylates ubiquitin, which in turn recruits and activates Parkin, an E3 ubiquitin ligase. Ubiquitylation of mitochondrial proteins leads to the autophagic degradation of the damaged organelle. Pharmacological modulation of PINK1 constitutes an appealing avenue to study its physiological function and develop therapeutics. In this study, we used a thermal shift assay with insect PINK1 to identify small molecules that inhibit ATP hydrolysis and ubiquitin phosphorylation. PRT062607, an SYK inhibitor, is the most potent inhibitor in our screen and inhibits both insect and human PINK1, with an IC50 in the 0.5-3 µM range in HeLa cells and dopaminergic neurons. The crystal structures of insect PINK1 bound to PRT062607 or CYC116 reveal how the compounds interact with the ATP-binding pocket. PRT062607 notably engages with the catalytic aspartate and causes a destabilization of insert-2 at the autophosphorylation dimer interface. While PRT062607 is not selective for PINK1, it provides a scaffold for the development of more selective and potent inhibitors of PINK1 that could be used as chemical probes.


Cyclohexylamines , Protein Kinases , Pyrimidines , Ubiquitin-Protein Ligases , Humans , Protein Kinases/metabolism , HeLa Cells , Ubiquitin-Protein Ligases/metabolism , Phosphorylation , Ubiquitin/metabolism , Adenosine Triphosphate/metabolism
2.
Autophagy ; : 1-3, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38597070

Mutations in the PINK1 kinase cause Parkinson disease (PD) through physiological processes that are not yet fully elucidated. PINK1 kinase accumulates selectively on damaged mitochondria, where it recruits the E3 ubiquitin ligase PRKN/Parkin to mediate mitophagy. Upon mitochondrial import failure, PINK1 accumulates in association with the translocase of outer mitochondrial membrane (TOMM). However, the molecular basis of this PINK1 accumulation on the TOMM complex remain elusive. We recently demonstrated that TIMM23 (translocase of the inner mitochondrial membrane 23) is a component of the PINK1-supercomplex formed in response to mitochondrial stress. We also uncovered that PINK1 is required for the formation of this supercomplex and highlighted the biochemical regulation and significance of this supercomplex; expanding our understanding of mitochondrial quality control and PD pathogenesis.

3.
Proc Natl Acad Sci U S A ; 121(10): e2313540121, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38416681

Mutations in PTEN-induced putative kinase 1 (PINK1) cause autosomal recessive early-onset Parkinson's disease (PD). PINK1 is a Ser/Thr kinase that regulates mitochondrial quality control by triggering mitophagy mediated by the ubiquitin (Ub) ligase Parkin. Upon mitochondrial damage, PINK1 accumulates on the outer mitochondrial membrane forming a high-molecular-weight complex with the translocase of the outer membrane (TOM). PINK1 then phosphorylates Ub, which enables recruitment and activation of Parkin followed by autophagic clearance of the damaged mitochondrion. Thus, Parkin-dependent mitophagy hinges on the stable accumulation of PINK1 on the TOM complex. Yet, the mechanism linking mitochondrial stressors to PINK1 accumulation and whether the translocases of the inner membrane (TIMs) are also involved remain unclear. Herein, we demonstrate that mitochondrial stress induces the formation of a PINK1-TOM-TIM23 supercomplex in human cultured cell lines, dopamine neurons, and midbrain organoids. Moreover, we show that PINK1 is required to stably tether the TOM to TIM23 complexes in response to stress such that the supercomplex fails to accumulate in cells lacking PINK1. This tethering is dependent on an interaction between the PINK1 N-terminal-C-terminal extension module and the cytosolic domain of the Tom20 subunit of the TOM complex, the disruption of which, by either designer or PD-associated PINK1 mutations, inhibits downstream mitophagy. Together, the findings provide key insight into how PINK1 interfaces with the mitochondrial import machinery, with important implications for the mechanisms of mitochondrial quality control and PD pathogenesis.


Mitochondrial Precursor Protein Import Complex Proteins , Protein Kinases , Humans , Carrier Proteins/metabolism , Mitochondria/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Brain ; 147(3): 887-899, 2024 03 01.
Article En | MEDLINE | ID: mdl-37804111

There are 78 loci associated with Parkinson's disease in the most recent genome-wide association study (GWAS), yet the specific genes driving these associations are mostly unknown. Herein, we aimed to nominate the top candidate gene from each Parkinson's disease locus and identify variants and pathways potentially involved in Parkinson's disease. We trained a machine learning model to predict Parkinson's disease-associated genes from GWAS loci using genomic, transcriptomic and epigenomic data from brain tissues and dopaminergic neurons. We nominated candidate genes in each locus and identified novel pathways potentially involved in Parkinson's disease, such as the inositol phosphate biosynthetic pathway (INPP5F, IP6K2, ITPKB and PPIP5K2). Specific common coding variants in SPNS1 and MLX may be involved in Parkinson's disease, and burden tests of rare variants further support that CNIP3, LSM7, NUCKS1 and the polyol/inositol phosphate biosynthetic pathway are associated with the disease. Functional studies are needed to further analyse the involvements of these genes and pathways in Parkinson's disease.


Genome-Wide Association Study , Parkinson Disease , Humans , Parkinson Disease/genetics , Inositol Phosphates , Dopaminergic Neurons , Machine Learning , Phosphotransferases (Phosphate Group Acceptor)
6.
Mov Disord ; 38(10): 1806-1812, 2023 10.
Article En | MEDLINE | ID: mdl-37381728

BACKGROUND: Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA remains unclear. OBJECTIVES: To study rare ARSA variants in PD. METHODS: To study rare ARSA variants (minor allele frequency < 0.01) in PD, we performed burden analyses in six independent cohorts with 5801 PD patients and 20,475 controls, followed by a meta-analysis. RESULTS: We found evidence for associations between functional ARSA variants and PD in four cohorts (P ≤ 0.05 in each) and in the meta-analysis (P = 0.042). We also found an association between loss-of-function variants and PD in the United Kingdom Biobank cohort (P = 0.005) and in the meta-analysis (P = 0.049). These results should be interpreted with caution as no association survived multiple comparisons correction. Additionally, we describe two families with potential co-segregation of ARSA p.E382K and PD. CONCLUSIONS: Rare functional and loss-of-function ARSA variants may be associated with PD. Further replications in large case-control/familial cohorts are required. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Parkinson Disease , Humans , Gene Frequency , Parkinson Disease/genetics , Parkinson Disease/complications , United Kingdom , Cerebroside-Sulfatase
7.
PLoS One ; 18(4): e0284541, 2023.
Article En | MEDLINE | ID: mdl-37093842

Mitochondrial dysfunction is implicated in a wide array of human diseases ranging from neurodegenerative disorders to cardiovascular defects. The coordinated localization and import of proteins into mitochondria are essential processes that ensure mitochondrial homeostasis. The localization and import of most mitochondrial proteins are driven by N-terminal mitochondrial targeting sequences (MTS's), which interact with import machinery and are removed by the mitochondrial processing peptidase (MPP). The recent discovery of internal MTS's-those which are distributed throughout a protein and act as import regulators or secondary MPP cleavage sites-has expanded the role of both MTS's and MPP beyond conventional N-terminal regulatory pathways. Still, the global mutational landscape of MTS's remains poorly characterized, both from genetic and structural perspectives. To this end, we have integrated a variety of tools into one harmonized R/Shiny database called MTSviewer (https://neurobioinfo.github.io/MTSvieweR/), which combines MTS predictions, cleavage sites, genetic variants, pathogenicity predictions, and N-terminomics data with structural visualization using AlphaFold models of human and yeast mitochondrial proteomes. Using MTSviewer, we profiled all MTS-containing proteins across human and yeast mitochondrial proteomes and provide multiple case studies to highlight the utility of this database.


Proteome , Saccharomyces cerevisiae , Humans , Amino Acid Sequence , Saccharomyces cerevisiae/genetics , Proteome/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mutation
8.
J Mol Biol ; 435(12): 168090, 2023 06 15.
Article En | MEDLINE | ID: mdl-37054910

Parkinson's disease (PD) is the second most common neurodegenerative disease and represents a looming public health crisis as the global population ages. While the etiology of the more common, idiopathic form of the disease remains unknown, the last ten years have seen a breakthrough in our understanding of the genetic forms related to two proteins that regulate a quality control system for the removal of damaged or non-functional mitochondria. Here, we review the structure of these proteins, PINK1, a protein kinase, and parkin, a ubiquitin ligase with an emphasis on the molecular mechanisms responsible for their recognition of dysfunctional mitochondria and control of the subsequent ubiquitination cascade. Recent atomic structures have revealed the basis of PINK1 substrate specificity and the conformational changes responsible for activation of PINK1 and parkin catalytic activity. Progress in understanding the molecular basis of mitochondrial quality control promises to open new avenues for therapeutic interventions in PD.


Mitochondria , Parkinson Disease , Protein Kinases , Ubiquitin-Protein Ligases , Humans , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
10.
Life Sci Alliance ; 6(6)2023 06.
Article En | MEDLINE | ID: mdl-36941054

Autosomal recessive mutations in the Parkin gene cause Parkinson's disease. Parkin encodes an ubiquitin E3 ligase that functions together with the kinase PINK1 in a mitochondrial quality control pathway. Parkin exists in an inactive conformation mediated by autoinhibitory domain interfaces. Thus, Parkin has become a target for the development of therapeutics that activate its ligase activity. Yet, the extent to which different regions of Parkin can be targeted for activation remained unknown. Here, we have used a rational structure-based approach to design new activating mutations in both human and rat Parkin across interdomain interfaces. Out of 31 mutations tested, we identified 11 activating mutations that all cluster near the RING0:RING2 or REP:RING1 interfaces. The activity of these mutants correlates with reduced thermal stability. Furthermore, three mutations V393D, A401D, and W403A rescue a Parkin S65A mutant, defective in mitophagy, in cell-based studies. Overall our data extend previous analysis of Parkin activation mutants and suggests that small molecules that would mimic RING0:RING2 or REP:RING1 destabilisation offer therapeutic potential for Parkinson's disease patients harbouring select Parkin mutations.


Parkinson Disease , Ubiquitin-Protein Ligases , Animals , Humans , Rats , Gain of Function Mutation , Mutation/genetics , Parkinson Disease/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
J Biol Chem ; 299(4): 103064, 2023 04.
Article En | MEDLINE | ID: mdl-36841480

Gßγ subunits mediate many different signaling processes in various compartments of the cell, including the nucleus. To gain insight into the functions of nuclear Gßγ signaling, we investigated the functional role of Gßγ signaling in the regulation of GPCR-mediated gene expression in primary rat neonatal cardiac fibroblasts. We identified a novel, negative, regulatory role for the Gß1γ dimer in the fibrotic response. Depletion of Gß1 led to derepression of the fibrotic response at the mRNA and protein levels under basal conditions and an enhanced fibrotic response after sustained stimulation of the angiotensin II type I receptor. Our genome-wide chromatin immunoprecipitation experiments revealed that Gß1 colocalized and interacted with RNA polymerase II on fibrotic genes in an angiotensin II-dependent manner. Additionally, blocking transcription with inhibitors of Cdk9 prevented association of Gßγ with transcription complexes. Together, our findings suggest that Gß1γ is a novel transcriptional regulator of the fibrotic response that may act to restrict fibrosis to conditions of sustained fibrotic signaling. Our work expands the role for Gßγ signaling in cardiac fibrosis and may have broad implications for the role of nuclear Gßγ signaling in other cell types.


Fibroblasts , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Gene Expression Regulation , Myocardium , RNA Polymerase II , Transcription, Genetic , Animals , Rats , Angiotensin II/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Fibroblasts/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Signal Transduction/physiology , Myocardium/cytology , Myocardium/pathology , Fibrosis
12.
Brain ; 146(5): 1859-1872, 2023 05 02.
Article En | MEDLINE | ID: mdl-36370000

The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied.


Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Glucosylceramidase/genetics , Genome-Wide Association Study , Mutation , Hydrolases/genetics
13.
J Mol Med (Berl) ; 100(5): 747-762, 2022 05.
Article En | MEDLINE | ID: mdl-35391620

Mitochondria dysfunction is involved in the pathomechanism of many illnesses including Parkinson's disease. PINK1, which is mutated in some cases of familial Parkinsonism, is a key component in the degradation of damaged mitochondria by mitophagy. The accumulation of PINK1 on the mitochondrial outer membrane (MOM) of compromised organelles is crucial for the induction of mitophagy, but the molecular mechanism of this process is still unresolved. Here, we investigate the association of PINK1 with the TOM complex. We demonstrate that PINK1 heavily relies on the import receptor TOM70 for its association with mitochondria and directly interacts with this receptor. The structural protein TOM7 appears to play only a moderate role in PINK1 association with the TOM complex, probably due to its role in stabilizing this complex. PINK1 requires the TOM40 pore lumen for its stable interaction with the TOM complex and apparently remains there during its further association with the MOM. Overall, this study provides new insights on the role of the individual TOM subunits in the association of PINK1 with the MOM of depolarized mitochondria. KEY MESSAGES: TOM70 is the main receptor for the import of PINK1 into mitochondria. TOM20 plays only a minor role in PINK1 recognition at the organellar outer membrane. PINK1 association with the TOM complex is reduced upon knock-down of TOM7. The lumen of the TOM pore is crucial for PINK1 association with the outer membrane. TcPINK1 blocks the TOM pore in depolarized mitochondria.


Mitochondria , Mitochondrial Membrane Transport Proteins , Carrier Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitophagy , Protein Kinases/genetics , Protein Kinases/metabolism
14.
Parkinsonism Relat Disord ; 98: 62-69, 2022 05.
Article En | MEDLINE | ID: mdl-35487127

INTRODUCTION: Spastic paraplegia type 4 (SPG4), resulting from heterozygous mutations in the SPAST gene, is the most common form among the heterogeneous group of hereditary spastic paraplegias (HSPs). We aimed to study genetic and clinical characteristics of SPG4 across Canada. METHODS: The SPAST gene was analyzed in a total of 696 HSP patients from 431 families by either HSP-gene panel sequencing or whole exome sequencing (WES). We used Multiplex ligation-dependent probe amplification to analyze copy number variations (CNVs), and performed in silico structural analysis of selected mutations. Clinical characteristics of patients were assessed, and long-term follow-up was done to study genotype-phenotype correlations. RESULTS: We identified 157 SPG4 patients from 65 families who carried 41 different SPAST mutations, six of which are novel and six are CNVs. We report novel aspects of mutations occurring in Arg499, a case with homozygous mutation, a family with probable compound heterozygous mutations, three patients with de novo mutations, three cases with pathogenic synonymous mutation, co-occurrence of SPG4 and clinically isolated syndrome, and novel or rarely reported signs and symptoms seen in SPG4 patients. CONCLUSION: Our study demonstrates that SPG4 is a heterogeneous type of HSP, with diverse genetic features and clinical manifestations. In rare cases, biallelic inheritance, de novo mutation, pathogenic synonymous mutations and CNVs should be considered.


Spastic Paraplegia, Hereditary , Spastin , Adenosine Triphosphatases/genetics , DNA Copy Number Variations , Humans , Mutation , Paraplegia/genetics , Phenotype , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics
15.
Methods ; 203: 17-27, 2022 07.
Article En | MEDLINE | ID: mdl-35331912

Patient-derived organoids from induced pluripotent stem cells have emerged as a model for studying human diseases beyond conventional two-dimensional (2D) cell culture. Briefly, these three-dimensional organoids are highly complex, capable of self-organizing, recapitulate cellular architecture, and have the potential to model diseases in complex organs, such as the brain. For example, the hallmark of Parkinson's disease (PD) - proteostatic dysfunction leading to the selective death of neurons in the substantia nigra - present a subtle distinction in cell type specificity that is lost in 2D cell culture models. As such, the development of robust methods to study global proteostasis and protein turnover in organoids will remain essential as organoid models evolve. To solve this problem, we have designed a workflow to reproducibly extract proteins from brain organoids, measure global turnover using mass spectrometry, and statistically investigate turnover differences between genotypes. We also provide robust methodology for data filtering and statistical treatment of turnover data. Using human midbrain organoids (hMO) as a model system, our method accurately characterized the half-lives of 773 midbrain proteins. We compared these half-lives both to Parkin knockout hMOs and to previously reported data from primary cell cultures and in vivo models. Overall, this method will facilitate the study of proteostasis in organoid models of human disease and will provide an analytical and statistical framework to measure protein turnover in organoids of all cell types.


Induced Pluripotent Stem Cells , Organoids , Cell Culture Techniques , Humans , Mass Spectrometry , Neurons/metabolism
16.
Open Biol ; 12(1): 210255, 2022 01.
Article En | MEDLINE | ID: mdl-35042405

Mutations in Parkin and PINK1 cause early-onset familial Parkinson's disease. Parkin is a RING-In-Between-RING E3 ligase that transfers ubiquitin from an E2 enzyme to a substrate in two steps: (i) thioester intermediate formation on Parkin and (ii) acyl transfer to a substrate lysine. The process is triggered by PINK1, which phosphorylates ubiquitin on damaged mitochondria, which in turn recruits and activates Parkin. This leads to the ubiquitination of outer mitochondrial membrane proteins and clearance of the organelle. While the targets of Parkin on mitochondria are known, the factors determining substrate selectivity remain unclear. To investigate this, we examined how Parkin catalyses ubiquitin transfer to substrates. We found that His433 in the RING2 domain contributes to the catalysis of acyl transfer. In cells, the mutation of His433 impairs mitophagy. In vitro ubiquitination assays with isolated mitochondria show that Mfn2 is a kinetically preferred substrate. Using proximity-ligation assays, we show that Mfn2 specifically co-localizes with PINK1 and phospho-ubiquitin (pUb) in U2OS cells upon mitochondrial depolarization. We propose a model whereby ubiquitination of Mfn2 is efficient by virtue of its localization near PINK1, which leads to the recruitment and activation of Parkin via pUb at these sites.


Protein Kinases , Ubiquitin-Protein Ligases , Mitochondria/metabolism , Mitophagy/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
17.
J Parkinsons Dis ; 12(1): 333-340, 2022.
Article En | MEDLINE | ID: mdl-34690151

BACKGROUND: PSAP encodes saposin C, the co-activator of glucocerebrosidase, encoded by GBA. GBA mutations are associated with idiopathic/isolated REM sleep behavior disorder (iRBD), a prodromal stage of synucleinopathy. OBJECTIVE: To examine the role of PSAP mutations in iRBD. METHODS: We fully sequenced PSAP and performed Optimized Sequence Kernel Association Test in 1,113 iRBD patients and 2,324 controls. We identified loss-of-function (LoF) mutations, which are very rare in PSAP, in three iRBD patients and none in controls (uncorrected p = 0.018). RESULTS: Two variants were stop mutations, p.Gln260Ter and p.Glu166Ter, and one was an in-frame deletion, p.332_333del. All three mutations have a deleterious effect on saposin C, based on in silico analysis. In addition, the two carriers of p.Glu166Ter and p.332_333del mutations also carried a GBA variant, p.Arg349Ter and p.Glu326Lys, respectively. The co-occurrence of these extremely rare PSAP LoF mutations in two (0.2%) GBA variant carriers in the iRBD cohort, is unlikely to occur by chance (estimated co-occurrence in the general population based on gnomAD data is 0.00035%). Although none of the three iRBD patients with PSAP LoF mutations have phenoconverted to an overt synucleinopathy at their last follow-up, all manifested initial signs suggestive of motor dysfunction, two were diagnosed with mild cognitive impairment and all showed prodromal clinical markers other than RBD. Their probability of prodromal PD, according to the Movement Disorder Society research criteria, was 98% or more. CONCLUSION: These results suggest a possible role of PSAP variants in iRBD and potential genetic interaction with GBA, which requires additional studies.


Parkinson Disease , REM Sleep Behavior Disorder , Saposins/genetics , Synucleinopathies , Glucosylceramidase/genetics , Humans , Parkinson Disease/complications , REM Sleep Behavior Disorder/diagnosis
18.
Mol Cell ; 82(1): 44-59.e6, 2022 01 06.
Article En | MEDLINE | ID: mdl-34875213

Mutations in PINK1 cause autosomal-recessive Parkinson's disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1. Our structures reveal a dimeric autophosphorylation complex targeting phosphorylation at the invariant Ser205 (human Ser228). The dimer interface requires insert 2, which is unique to PINK1. The structures also reveal how an N-terminal helix binds to the C-terminal extension and provide insights into stabilization of PINK1 on the core TOM complex.


Insect Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Protein Kinases/metabolism , Tribolium/enzymology , Animals , Cell Line, Tumor , Enzyme Activation , Enzyme Stability , Humans , Insect Proteins/genetics , Kinetics , Mitochondria/genetics , Mitochondrial Precursor Protein Import Complex Proteins/genetics , Molecular Docking Simulation , Mutation , Phosphorylation , Protein Interaction Domains and Motifs , Protein Kinases/genetics , Structure-Activity Relationship , Tribolium/genetics
19.
Sci Rep ; 11(1): 23189, 2021 11 30.
Article En | MEDLINE | ID: mdl-34848742

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known to mediate toxic responses to dioxin. However, the role of the AhR in the regulation of cellular physiology has only recently been appreciated, including its ability to control cell cycle progression and apoptosis by unknown mechanisms. We hypothesized that the AhR enhances the activation of the AKT serine/threonine kinase (Akt) pathway to promote cell survival. Utilizing AhR knock-out (Ahr-/-) and wild-type (Ahr+/+) mouse lung fibroblasts (MLFs), we found that Ahr-/- MLFs have significantly higher basal Akt phosphorylation but that AhR did not affect Akt phosphorylation in MLFs exposed to growth factors or AhR ligands. Basal Akt phosphorylation was dependent on PI3K but was unaffected by changes in intracellular glutathione (GSH) or p85α. There was no significant decrease in cell viability in Ahr-/- MLFs treated with LY294002-a PI3K inhibitor-although LY294002 did attenuate MTT reduction, indicating an affect on mitochondrial function. Using a mass spectrometry (MS)-based approach, we identified several proteins that were differentially phosphorylated in the Ahr-/- MLFs compared to control cells, including proteins involved in the regulation of extracellular matrix (ECM), focal adhesion, cytoskeleton remodeling and mitochondrial function. In conclusion, Ahr ablation increased basal Akt phosphorylation in MLFs. Our results indicate that AhR may modulate the phosphorylation of a variety of novel proteins not previously identified as AhR targets, findings that help advance our understanding of the endogenous functions of AhR.


Gene Expression Regulation , Lung/metabolism , Proto-Oncogene Proteins c-akt/biosynthesis , Receptors, Aryl Hydrocarbon/metabolism , Animals , Cell Survival , Cells, Cultured , Cytoskeleton , Fibroblasts/metabolism , Homeostasis , Intercellular Signaling Peptides and Proteins , Mass Spectrometry , Mice , Phosphorylation , Proteomics/methods , Smoke , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology , Tobacco Products
20.
Front Neurol ; 12: 656342, 2021.
Article En | MEDLINE | ID: mdl-34421783

Background: Most research in genomics of Parkinson's disease (PD) has been done in subjects of European ancestry, leading to sampling bias and leaving Latin American populations underrepresented. We sought to clinically characterize PD patients of Costa Rican origin and to sequence familial PD and atypical parkinsonism-associated genes in cases and controls. Methods: We enrolled 118 PD patients with 97 unrelated controls. Collected information included demographics, exposure to risk and protective factors, and motor and cognitive assessments. We sequenced coding and untranslated regions in familial PD and atypical parkinsonism-associated genes including GBA, SNCA, VPS35, LRRK2, GCH1, PRKN, PINK1, DJ-1, VPS13C, and ATP13A2. Results: Mean age of PD probands was 62.12 ± 13.51 years; 57.6% were male. The frequency of risk and protective factors averaged ~45%. Physical activity significantly correlated with better motor performance despite years of disease. Increased years of education were significantly associated with better cognitive function, whereas hallucinations, falls, mood disorders, and coffee consumption correlated with worse cognitive performance. We did not identify an association between tested genes and PD or any damaging homozygous or compound heterozygous variants. Rare variants in LRRK2 were nominally associated with PD; six were located between amino acids p.1620 and 1623 in the C-terminal-of-ROC (COR) domain of Lrrk2. Non-synonymous GBA variants (p.T369M, p.N370S, and p.L444P) were identified in three healthy individuals. One PD patient carried a pathogenic GCH1 variant, p.K224R. Discussion: This is the first study that describes sociodemographics, risk factors, clinical presentation, and genetics of Costa Rican patients with PD, adding information to genomics research in a Latino population.

...